;-----------------------------------------------------------------------------------------------; ; Program: Divider & Pseudo-Sequencer ; ; Developed by David J. Brown ; ; Copyright (c) April 13, 2004 David J. Brown ; ; Email: davebr@earthlink.net ; ; Web site: http://modularsynthesis.com ; ;-----------------------------------------------------------------------------------------------; ; LICENSE AGREEMENT: ; ; This program is free software. You can redistribute it and/or modify it. ; ; ; ; This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY, ; ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ; ;-----------------------------------------------------------------------------------------------; ' ' Description: ' ' This program takes a clock input on aux and ' divides it by selectable integer values. Each ' clock has a set hi and low time value. ' ' define the number of clocks for hi and low pulse width ' out-1 divide by 2 symmetrical out1_hi con 3 'clock 1 hi out1_lo con 1 'clock 1 low ' out-2 divide by 3 asymmetrical out2_hi con 3 'clock 2 hi out2_lo con 2 'clock 2 low ' out-3 divide by 4 asymmetrical out3_hi con 3 'clock 3 hi out3_lo con 3 'clock 3 low ' out-4 divide by 6 symmetrical out4_hi con 4 'clock 4 hi out4_lo con 3 'clock 4 low ' ' Out-4 can be either a logic level or a pseudo-sequence. ' If all inputs are 0 then logic level mode is selected. ' If any input is non 0 then pseudo-sequence mode is ' selected. Start or stop will increase the ' pseudo-sequence length. The pseudo-sequence is also ' sent to midi out. Program change will alternate every ' cycle repetition (e.g. out 1-3 are all 0) using in 1-4 ' for program change. If a midi note is received then the ' note value will be used for the program change and the ' repetition mode will be disabled. ' ' inputs: ' start = long sequence while true ' stop = alternate long sequence while true ' in-1 = clock/a level for pseudo-sequence ' in-2 = clock/b level for pseudo-sequence ' in-3 = clock/c level for pseudo-sequence ' in-4 = clock/d level for pseudo-sequence ' aux = clock input ' midi-in = n/a ' ' outputs: ' out-1 = clock/a (5 volt level) ' out-2 = clock/b (5 volt level) ' out-3 = clock/c (5 volt level) ' out-4 = selectable clock/d or pseudo-sequence output ' clock/d (5 volt level) ' pseudo-sequence is quantized sum of in-x's*clock/x's ' midi-out= pseudo-sequence ' speakjet= voice output ' ' run led = toggles @ 0.5 S ' stop led = flash indicates clock (rising edge detected) ' ' written by David J. Brown ' revision: 0.3X ' April 28, 2010 ' history: 0.3X changed shiftout for Studio ' 0.3 added display of program name ' 0.2 added midi output in pseudo-sequence mode ' 0.1 changed code to allow for odd dividers ' 0.0 initial code for divider and pseudo-sequencer program ' date: May 31, 2004 ' '########################################### ' ' ### CONDITIONAL COMPILING OPTION ### ' set MIDI INTERRUPT mode ' ' comment out next line for polled mode midi_int_en con 1 'define to enable midi-in interrupts ' comment to set polled midi-in mode ' '########################################### ' ' ### CONDITIONAL COMPILING OPTION ### ' set TIMER INTERRUPT mode ' note: Run led will blink if timer_int_en defined ' ' comment out next line to disable timer interrupts timer_int_en con 1 'define to enable timer interrupts ' comment to disable timer interrupts ' '########################################### ' ' ### CONDITIONAL COMPILING OPTION ### ' set INPUT INTERRUPT mode ' note: Requires timer_int_en to be defined ' ' comment out next line to disable input interrupts ; input_int_en con 1 'define to enable input interrupt mode ' comment to set polled input mode ' '########################################### ' 'djb template written by David J. Brown 'based on code from Brice Hornback and Grant Richter 'revision: 0.41 ' May 13, 2004 'history: 0.41 upper case conversion to lower, variables and ' labels renamed ' 0.4 added averaged input input driver (polled or ' interrupt mode), display_led driver (for debug), ' speakjet driver, renamed program to djb template ' 0.3 added program header information, modified ' pin initialization ' 0.2 initialize aux output low and speakjet pins ' 0.1 added DAC & led initialization, 1 mS timestamp, ' stop led blinks when midi data received, run ' led toggles @ 0.5 S for health indication ' 0.0 initial release of midi input & output program 'date: April 13, 2004 '******************************************* ' module: PSIM-1 REV1b ' processor Type: Basic Micro - Basic Atom Pro24M '******************************************* ' ' Basic Micro Atom Pro-24M Configuration ' ' P0 - in-1 ' P1 - in-2 ' P2 - in-3 ' P3 - in-4 ' P4 - start button (momentary normally open switch) ' P5 - stop button (momentary normally open switch) ' P6 - j3 pin 2 (speakjet buffer half full) ' P7 - j3 pin 1 (serial data to speakjet) ' P8 - aux digital I/O ' P9 - stop led ' P10 - run led ' P11 - load_dacs ' P12 - ser_data ' P13 - clock ' P14 - j5 pin 1 (midi-in) ' P15 - j5 pin 2 (midi-out) ' '******************************************* ' 'pin constants pin_j1 con 0 'in-1 pin pin_j2 con 1 'in-2 pin pin_j3 con 2 'in-3 pin pin_j4 con 3 'in-4 pin start_j con 4 'start button and jack stop_j con 5 'stop button and jack aux_j con 8 'aux jack stop_led con 9 'stop led (red) run_led con 10 'run led (green) load_dacs con 11 'load dac pin ser_data con 12 'serial data to dac pin clock con 13 'dac clock pin 'i/o variable declarations in_j1 var word 'in-1 value: get_inputs, get_inputs_avg, avg1 in_j2 var word 'in-2 value: get_inputs, get_inputs_avg, avc2 in_j3 var word 'in-3 value: get_inputs, get_inputs_avg, avg3 in_j4 var word 'in-4 value: get_inputs, get_inputs_avg, avg4 out_j1 var word 'out-1 value: load_outputs out_j2 var word 'out-2 value: load_outputs out_j3 var word 'out-3 value: load_outputs out_j4 var word 'out-4 value: load_outputs 'midi variable declarations note_off con $80 'midi note-off command: send_note_on, send_note_off note_on con $90 'midi note-on command: send_note_on, send_note_off pgm_chg con $c0 'midi program change command:send_prog_change midi_chan var nib 'midi channel (0 - 15): send_note_on, send_note_off midi_note var byte 'midi note value: send_note_on, send_note_off midi_vel var byte 'midi velocity value: send_note_on, send_note_off midi_pgm var byte 'midi program change value:send_prog_change 'midi driver variable declarations midi_data var byte 'variable: check_midi, send_midi, get_rcx_bfr, send_note_on, send_note_off midi_data_isr var byte 'variable: midi_in_isr rcx_status var byte 'variable: check_midi, send_midi rcx_ptr_strt var byte 'received data start pointer (first data in buffer): get_rcx_bfr rcx_ptr_end var byte 'received data end pointer (last data in buffer+1): check_midi, midi_in_isr rcx_bfr_num var byte 'number of bytes in data buffer: check_midi, get_rcx_bfr, midi_in_isr rcx_data_flg var bit 'received data flag (1=data, 0=no data): get_rcx_bfr rcx_bfr_len con 32 'midi-in buffer length: rcx_bfr rcx_bfr var byte(rcx_bfr_len) 'midi-in data buffer: check_midi, get_rcx_bfr, midi_in_isr 'timer variable declarations #ifdef timer_int_en time_count var long '1 mS timer count value: tm_isr turn_off var long 'time value to turn off stop led: tm_isr #endif 'input variable declarations in_j1_ptr var byte 'in-1 buffer pointer: avgx, get_inputs_avg #ifdef input_int_en in_j2_ptr var byte 'in-2 buffer pointer: avgx in_j3_ptr var byte 'in-3 buffer pointer: avgx in_j4_ptr var byte 'in-4 buffer pointer: avgx isr_cnt var nib 'timer pass counter: tm_isr #endif in_j1_tmp var long 'in-1 temporary variable: avgx, get_inputs_avg in_j2_tmp var long 'in-2 temporary variable: avgx, get_inputs_avg in_j3_tmp var long 'in-3 temporary variable: avgx, get_inputs_avg in_j4_tmp var long 'in-4 temporary variable: avgx, get_inputs_avg in_j1_bfr var long(2) 'in-1 last 4 samples buffer: avgx, get_inputs_avg in_j2_bfr var long(2) 'in-2 last 4 samples buffer: avgx, get_inputs_avg in_j3_bfr var long(2) 'in-3 last 4 samples buffer: avgx, get_inputs_avg in_j4_bfr var long(2) 'in-4 last 4 samples buffer: avgx, get_inputs_avg 'misc variable declarations led_data var byte 'variable: display_led count_val var byte 'suboctave divide counter: clk_look_1 out1_cnt_hi var byte 'out 1 counter hi out1_cnt_lo var byte 'out 1 counter lo out2_cnt_hi var byte 'out 2 counter hi out2_cnt_lo var byte 'out 2 counter lo out3_cnt_hi var byte 'out 3 counter hi out3_cnt_lo var byte 'out 3 counter lo out4_cnt_hi var byte 'out 4 counter hi out4_cnt_lo var byte 'out 4 counter lo cycle_cnt var nib 'cycle count for program change midi_flg var bit 'midi received flag ' '******************************************* ' 'initialize pins 'note: setting midi-out, i2c_clock, and i2c_data to outputs can send glitches so initialize as inputs dirs=%0011111000000000 'configure pin direction (1=output, 0=input) 'inputs: midi-in, aux, start, stop, in-4, in-3, in-2, in-1 'outputs: load_dacs, ser_data, clock, stop led, run led, i2c clock & data low run_led 'set run led off low stop_led 'set stop led off high load_dacs 'set dac load-0 high low ser_data 'set dac data low low clock 'set dac clock low let out_j1=0 'set out-1 low let out_j2=0 'set out-2 low let out_j3=0 'set out-3 low let out_j4=0 'set out-4 low gosub load_outputs ' 'initialize midi hardware 'these next 6 commands need to be in this order! let scr3=%00000000 'reset Serial Control Register let smr=%00000000 'set Serial Mode Register ' asynchronous ' 8 bits ' parity disabled ' even parity (disabled) ' 1 stop bit ' multiprocessor mode disabled ' brr clock source direct let brr=15 'set Bit Rate Register for 31500 baud pauseus 100 'let brr settle for 50 uS let scr3=%00110000 'set Serial Control Register ' transmit or receive interrupts disabled ' transmit and receive enabled ' multiprocessor interrupt disabled ' transmit end interrupt disabled ' internal baud rate generator let pmr1=%00001110 'set Port Mode Register ' P17 general I/O port ' P16 general I/O port ' P15 general I/O port ' P14 general I/O port ' txd output ' P10 general I/O port ' #ifdef timer_int_en 'initialize timer hardware for 1 mS interrupts let tmrw=%10001000 'set Timer Mode Register to enable count let tcrw=%10110000 'set Timer Control Register ' TCNT cleared by compare match ' /8 internal clock let tierw=%01110000 'set Timer Interrupt register to disable overflow interrupt let tsrw=%01110000 'set Timer Status Register to default let tior0=%10001000 'set Timer I/O Regiseter 0 to default let tior1=%10001000 'set Timer I/O Register 1 to default let gra=2000 'set General Register A ' 16 MHz clock /8 = 2 MHz ' 2000 counts = 1 mS interrupt #endif ' 'initialize misc variables let rcx_ptr_strt=0 'set receive start pointer let rcx_ptr_end=0 'set receive end pointer let rcx_bfr_num=0 'set receive buffer to empty let midi_chan=0 'set midi channel to 0 let midi_note=128 'set midi note invalid let midi_vel=$40 'set default velocity let midi_pgm=0 'set default program change let led_data=0 'set led data to 0 let in_j1_ptr=0 'set in-1 pointer to 0 #ifdef input_int_en let in_j2_ptr=0 'set in-2 pointer to 0 let in_j3_ptr=0 'set in-3 pointer to 0 let in_j4_ptr=0 'set in-4 pointer to 0 let isr_cnt=0 'set isr pass counter to 0 #endif let in_j1_bfr(0)=0 'set in-1 buffer data to 0 let in_j1_bfr(1)=0 let in_j2_bfr(0)=0 'set in-2 buffer data to 0 let in_j2_bfr(1)=0 let in_j3_bfr(0)=0 'set in-3 buffer data to 0 let in_j3_bfr(1)=0 let in_j4_bfr(0)=0 'set in-4 buffer data to 0 let in_j4_bfr(1)=0 let out1_cnt_hi=0 'set counters to initial state let out1_cnt_lo=out1_lo 'set counters to initial state let out2_cnt_hi=0 'set counters to initial state let out2_cnt_lo=out2_lo 'set counters to initial state let out3_cnt_hi=0 'set counters to initial state let out3_cnt_lo=out3_lo 'set counters to initial state let out4_cnt_hi=0 'set counters to initial state let out4_cnt_lo=out4_lo 'set counters to initial state let midi_data=$b0+midi_chan 'send all notes off gosub send_midi let midi_data=$7b gosub send_midi let midi_data=0 gosub send_midi let midi_flg=0 'reset midi received flag ' 'display program name let midi_data=$f0 'sysex gosub send_midi let midi_data=$7d 'display id gosub send_midi let midi_data=$0a 'clear display gosub send_midi let midi_data=$18 'overwrite gosub send_midi let midi_data="D" gosub send_midi let midi_data="i" gosub send_midi let midi_data="v" gosub send_midi let midi_data="i" gosub send_midi let midi_data="d" gosub send_midi let midi_data="e" gosub send_midi let midi_data="r" gosub send_midi let midi_data="&" gosub send_midi let midi_data="P" gosub send_midi let midi_data="s" gosub send_midi let midi_data="e" gosub send_midi let midi_data="u" gosub send_midi let midi_data="d" gosub send_midi let midi_data="o" gosub send_midi let midi_data="S" gosub send_midi let midi_data="q" gosub send_midi let midi_data=$f7 'end sysex gosub send_midi ' 'enable timer interrupts #ifdef timer_int_en let time_count=0 'set real time counter to 0 let turn_off=0 'set time to turn off to time_count oninterrupt timerwint_imiea, tm_isr enable timerwint_imiea 'enable timer interrupt #endif ' 'enable midi interrupts #ifdef midi_int_en oninterrupt sci3int_rdrf, midi_in_isr enable sci3int_rdrf 'enable midi-in interrupt #endif ' 'main program for dividers clk_look_1: if in8=0 then clk_look_1 'look for clock hi transition #ifdef timer_int_en high stop_led 'flash stop led disable timerwint_imiea turn_off=time_count+10 'set off time as current+10 mS enable timerwint_imiea #endif let count_val=count_val+1 'increment counter for high bits 'counter 1 if out1_cnt_hi=0 then 'determine if counting hi or low let out1_cnt_lo=out1_cnt_lo-1 'counting low time if out1_cnt_lo=0 then 'done? let out1_cnt_hi=out1_hi 'reset hi counter let out_j1=1920 '5 volt output endif else let out1_cnt_hi=out1_cnt_hi-1 'counting hi time if out1_cnt_hi=0 then 'done? let out1_cnt_lo=out1_lo 'reset low counter let out_j1=0 '0 output endif endif 'counter 2 if out2_cnt_hi=0 then 'determine if counting hi or low out2_cnt_lo=out2_cnt_lo-1 'counting low time if out2_cnt_lo=0 then 'done? let out2_cnt_hi=out2_hi 'reset hi counter let out_j2=1920 '5 volt output endif else out2_cnt_hi=out2_cnt_hi-1 'counting hi time if out2_cnt_hi=0 then 'done? let out2_cnt_lo=out2_lo 'reset low counter let out_j2=0 '0 output endif endif 'counter 3 if out3_cnt_hi=0 then 'determine if counting hi or low out3_cnt_lo=out3_cnt_lo-1 'counting low time if out3_cnt_lo=0 then 'done? let out3_cnt_hi=out3_hi 'reset hi counter let out_j3=1920 '5 volt output endif else out3_cnt_hi=out3_cnt_hi-1 'counting hi time if out3_cnt_hi=0 then 'done? let out3_cnt_lo=out3_lo 'reset low counter let out_j3=0 '0 output endif endif 'counter 4 if out4_cnt_hi=0 then 'determine if counting hi or low out4_cnt_lo=out4_cnt_lo-1 'counting low time if out4_cnt_lo=0 then 'done? let out4_cnt_hi=out4_hi 'reset hi counter let out_j4=1920 '5 volt output endif else out4_cnt_hi=out4_cnt_hi-1 'counting hi time if out4_cnt_hi=0 then 'done? let out4_cnt_lo=out4_lo 'reset low counter let out_j4=0 '0 output endif endif gosub get_inputs 'check to see if analog or binary mode (allow a couple of bits) if (in_j1>2) or (in_j2>2) or (in_j3>2) or (in_j4>2) then let out_j4=(in_j4*out_j4.bit10)+(in_j3*out_j3.bit10) | +(in_j2*out_j2.bit10)+(in_j1*out_j1.bit10) if (in4=1) and (in5=0) then 'start true so longer sequence let out_j4=(out_j4+(in_j4*count_val.bit7)+(in_j3*count_val.bit6) | +(in_j2*count_val.bit5)+(in_j1*count_val.bit4))/2 endif if (in4=0) and (in5=1) then 'stop true so alternate longer sequence let out_j4=(out_j4+(in_j1*count_val.bit7)+(in_j2*count_val.bit6) | +(in_j3*count_val.bit5)+(in_j4*count_val.bit4))/2 endif if midi_note<128 then 'do not send note off first time gosub send_note_off endif if midi_flg=0 then 'repeat of cycle selects new program change if (out_j1=0) and (out_j2=0) and (out_j3=0) then let cycle_cnt=(cycle_cnt+1)&03 if cycle_cnt=0 then 'sequence through inputs for program change let midi_pgm=in_j1/8 elseif cycle_cnt=1 let midi_pgm=in_j2/8 elseif cycle_cnt=2 let midi_pgm=in_j3/8 elseif cycle_cnt=3 let midi_pgm=in_j4/8 endif gosub send_prog_change if rcx_bfr_num>0 then 'check to see if midi data received let midi_flg=1 'set flag for midi in to control program changes endif endif else 'midi in note defines program change if rcx_bfr_num>2 then 'wait for at least 3 bytes of received data gosub get_rcx_bfr if midi_data=$90 then 'note on or possibly off gosub get_rcx_bfr 'get note data let midi_pgm=midi_data gosub get_rcx_bfr 'get velocity if midi_data<>0 then 'make sure note on and not off gosub send_prog_change endif elseif midi_data.bit7=0 let midi_pgm=midi_data 'running status so assume note on gosub get_rcx_bfr 'get velocity if midi_data<>0 then 'make sure note on and not off gosub send_prog_change endif endif endif endif let out_j4=out_j4/34 'quantize sum of in-x's*clock/x's let midi_note=(out_j4+24)&$7f let out_j4=out_j4*32 'scale for output gosub send_note_on endif gosub load_outputs clk_look_0: if in8=1 then clk_look_0 'look for clock low transition goto clk_look_1 ' '******************************************* ' subroutines '******************************************* ' #ifndef midi_int_en 'poll midi-in 'puts data into buffer and sets rcx_bfr_num to number of entries 'written by David J. Brown check_midi: let rcx_status=ssr if rcx_status&%01000000 then 'data has been received let midi_data=rdr 'read Receiver Data Register if midi_data<>$fe then 'ignore if active status 'put midi_data into receive buffer 'check to see if buffer full if rcx_bfr_num=rcx_bfr_len then 'buffer is full 'simply loose data else 'buffer has space let rcx_bfr(rcx_ptr_end)=midi_data let rcx_bfr_num=rcx_bfr_num+1 let rcx_ptr_end=rcx_ptr_end+1 if rcx_ptr_end=rcx_bfr_len then rcx_ptr_end=0 'wrap pointer at max value endif endif endif else 'no data received 'check if error if rcx_status&%00111000 then 'error condition let rcx_status=rcx_status&%10000111 let ssr=rcx_status 'reset error bits endif endif return #endif ' 'gets midi_data from buffer 'rcx_data_flg=1 if successful, rcx_data_flg=0 if no data in buffer 'written by David J. Brown get_rcx_bfr: #ifdef midi_int_en disable sci3int_rdrf 'isr uses the same variables #endif 'check to see if buffer empty if rcx_bfr_num=0 then 'buffer is empty rcx_data_flg=0 'set empty flag else 'buffer has data let midi_data=rcx_bfr(rcx_ptr_strt) let rcx_bfr_num=rcx_bfr_num-1 let rcx_ptr_strt=rcx_ptr_strt+1 if rcx_ptr_strt=rcx_bfr_len then let rcx_ptr_strt=0 'wrap pointer at max value endif let rcx_data_flg=1 'set data returned flag endif #ifdef midi_int_en enable sci3int_rdrf #endif return ' 'output 3 byte midi note-on command send_note_on: let midi_data=note_on+midi_chan gosub send_midi let midi_data=midi_note gosub send_midi let midi_data=midi_vel gosub send_midi return ' 'output 3 byte midi note-off command send_note_off: let midi_data=note_off+midi_chan gosub send_midi let midi_data=midi_note gosub send_midi let midi_data=0 gosub send_midi return ' 'output 3 byte program change command send_prog_change: let midi_data=pgm_chg+midi_chan gosub send_midi let midi_data=midi_pgm gosub send_midi return ' 'subroutine to send midi_data 'waits until transmitter ready send_midi: let rcx_status=ssr if rcx_status&%10000000 then 'check transmitter ready 'ready to transmit let tdr=midi_data 'send data to tdr return endif goto send_midi ' #ifndef input_int_en 'sample in-1 to in-4 'injx is input value (0 - 1023) '150 uS execution time get_inputs: adin pin_j1,in_j1 adin pin_j2,in_j2 adin pin_j3,in_j3 adin pin_j4,in_j4 return ' 'sample and average in-1 to in-4 'injx is input value averaged over last four samples (0 - 1023) 'injx_bfr(0) & injx_bfr(1) are last four word samples '600 uS execution time 'written by David J. Brown get_inputs_avg: adin pin_j1, in_j1_bfr.word1(in_j1_ptr) 'get in-1 into buffer let in_j1_tmp=in_j1_bfr(0)+in_j1_bfr(1) 'add two high words together and low words together let in_j1=(in_j1_tmp.word1+in_j1_tmp.word0)/4 adin pin_j2, in_j2_bfr.word1(in_j1_ptr) 'get in-2 into buffer let in_j2_tmp=in_j2_bfr(0)+in_j2_bfr(1) 'add two high words together and low words together let in_j2=(in_j2_tmp.word1+in_j2_tmp.word0)/4 adin pin_j3, in_j3_bfr.word1(in_j1_ptr) 'get in-3 into buffer let in_j3_tmp=in_j3_bfr(0)+in_j3_bfr(1) 'add two high words together and low words together let in_j3=(in_j3_tmp.word1+in_j3_tmp.word0)/4 adin pin_j4, in_j4_bfr.word1(in_j1_ptr) 'get in-4 into buffer let in_j4_tmp=in_j4_bfr(0)+in_j4_bfr(1) 'add two high words together and low words together let in_j4=(in_j4_tmp.word1+in_j4_tmp.word0)/4 let in_j1_ptr=(in_j1_ptr+1)&$03 'increment pointer and wrap at 3 return #endif ' 'routine to display led_data to out leds 'note: sets outjx values to 0 'written by David J. Brown display_led: let out_j1=0 'output high nibble of data let out_j2=0 let out_j3=0 let out_j4=0 let out_j1.bit11=led_data.bit7 'sets output value to 2048 if bit is 1 let out_j2.bit11=led_data.bit6 let out_j3.bit11=led_data.bit5 let out_j4.bit11=led_data.bit4 gosub load_outputs pause 750 'display high nibble let out_j1.bit11=led_data.bit3 'output low nibble of data let out_j2.bit11=led_data.bit2 let out_j3.bit11=led_data.bit1 let out_j4.bit11=led_data.bit0 gosub load_outputs pause 750 'display low nibble let out_j4=0 let out_j3=0 let out_j2=0 let out_j1=0 gosub load_outputs 'turn all leds off return ' 'output outjx values to dacs 'based on code written by Grant Richter '750 uS execution time load_outputs: 'add addresses to values 'shift out 16 bits mode 4 shiftout ser_data,clock,fastmsbpre,[(out_j1+49152)\16] pulsout load_dacs,1 'pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[(out_j2+32768)\16] pulsout load_dacs,1 'pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[(out_j3+16384)\16] pulsout load_dacs,1 'pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[out_j4\16] pulsout load_dacs,1 'pulse loaddacs for each channel return ' '******************************************* 'interrupt service routines '******************************************* ' #ifdef timer_int_en 'interrupt service routine for timer 'increments time_count value 'turn off stop led at turn_off value 'toggle run led at 512 mS intervals 'written by David J. Brown tm_isr: let time_count=time_count+1 'increment real time count if time_count=turn_off then 'value to turn off stop led low stop_led endif out10=time_count.bit9 'toggle run led at 512 mS intervals #endif #ifndef input_int_en resume 'resume if input polled mode #endif #ifdef input_int_en 'continue if input interrupt mode 'sample in-1 - in-4 at specific intervals 'injx is input averaged over last 4 samples (0 - 1023) 'injx_bfr(0) & injx_bfr(1) are last 4 word samples let isr_cnt=isr_cnt+1 'change the following table to modify the scan rate for each input '175 uS execution time so maximum of one sample and average per interrupt 'currently set for: in-1 @ 2 mS, in-2 @ 4 mS, in-3 @ 8 mS, in-4 @ 8 mS branch isr_cnt, [avg1, avg2, avg1, avg3, avg1, avg2, avg1, avg4, | avg1, avg2, avg1, avg3, avg1, avg2, avg1, avg4] 'sample in-1 avg1: adin pin_j1, in_j1_bfr.word1(in_j1_ptr) 'get in-1 into buffer let in_j1_tmp=in_j1_bfr(0)+in_j1_bfr(1) 'add two high words together and low words together let in_j1=(in_j1_tmp.word1+in_j1_tmp.word0)/4 let in_j1_ptr=(in_j1_ptr+1)&$03 'increment pointer and wrap at 3 resume 'sample in-2 avg2: adin pin_j2, in_j2_bfr.word1(in_j2_ptr) 'get in-2 into buffer let in_j2_tmp=in_j2_bfr(0)+in_j2_bfr(1) 'add two high words together and low words together let in_j2=(in_j2_tmp.word1+in_j2_tmp.word0)/4 let in_j2_ptr=(in_j2_ptr+1)&$03 'increment pointer and wrap at 3 resume 'sample in-3 avg3: adin pin_j3, in_j3_bfr.word1(in_j3_ptr) 'get in-3 into buffer let in_j3_tmp=in_j3_bfr(0)+in_j3_bfr(1) 'add two high words together and low words together let in_j3=(in_j3_tmp.word1+in_j3_tmp.word0)/4 let in_j3_ptr=(in_j3_ptr+1)&$03 'increment pointer and wrap at 3 resume 'sample in-4 avg4: adin pin_j4, in_j4_bfr.word1(in_j4_ptr) 'get in-4 into buffer let in_j4_tmp=in_j4_bfr(0)+in_j4_bfr(1) 'add two high words together and low words together let in_j4=(in_j4_tmp.word1+in_j4_tmp.word0)/4 let in_j4_ptr=(in_j4_ptr+1)&$03 'increment pointer and wrap at 3 resume #endif ' #ifdef midi_int_en 'interrupt service routine for midi-in data 'puts data into buffer and sets rcx_bfr_num to number of entries 'priority given to midi-in over timer interrupts 'written by David J. Brown midi_in_isr: 'read Receiver Data Register must be first instruction to clear interrupt let midi_data_isr=rdr 'read Receiver Data Register disable timerwint_imiea 'disable timer interrupts if midi_data_isr<>$fe then 'ignore if active status 'check to see if buffer full if rcx_bfr_num=rcx_bfr_len then 'buffer is full 'simply loose data else 'put data into buffer let rcx_bfr(rcx_ptr_end)=midi_data_isr let rcx_bfr_num=rcx_bfr_num+1 'set rcx_bfr_num to number of entries let rcx_ptr_end=rcx_ptr_end+1 'increment pointer for next entry if rcx_ptr_end=rcx_bfr_len then rcx_ptr_end=0 'wrap pointer at max value endif endif endif enable timerwint_imiea resume #endif ' '******************************************* 'end of program '*******************************************