;-----------------------------------------------------------------------------------------------; ; Program: MOTM-730 ; ; Developed by David J. Brown ; ; Copyright (c) April 13, 2004 David J. Brown ; ; Email: davebr@earthlink.net ; ; Web site: http://modularsynthesis.com ; ;-----------------------------------------------------------------------------------------------; ; LICENSE AGREEMENT: ; ; This program is free software. You can redistribute it and/or modify it. ; ; ; ; This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY, ; ; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ; ;-----------------------------------------------------------------------------------------------; ; ; Description: ; ; This program takes a clock input on aux and ; divides it by selectable integer values. ; ;inputs: ; start = ; stop = hold ; in-1 = /N initial divider ; in-2 = CV gain ; in-3 = CV in ; in-4 = step select (4ths, 5ths, or octaves) ; aux = clock input (assumes 50% duty cycle) ; midi-in = n/a ; ; outputs: ; out-1 = clock/9 ; out-2 = clock/10 ; out-3 = clock/N ; out-4 = step ; midi-out= PAiA channel 0 mode 3. Out-1 = clk/1, etc. ; speakjet= voice output ; ; run led = toggles @ 0.5 S ; stop led = clock high level ; ; written by Dave Brown ; revision: 0.3X ; April 29, 2010 ; history: 0.3X changed shiftout for Studio, removed serial speakjet ; 0.3 removed debug_led and updated debug_speakjet ; to eliminiate push/pop ; 0.2 added display of program name ; 0.1 modified for timer interrupt MIDI output ; 0.0 adapted from divider and pseudo-sequencer program ; date: May 31, 2004 ; ;########################################### ; ; ### CONDITIONAL COMPILING OPTION ### ; set MIDI INTERRUPT mode ; ; comment out next line for polled mode ' midi_int_en con 1 ;define to enable midi-in interrupts ; comment to set polled midi-in mode ; ;########################################### ; ; ### CONDITIONAL COMPILING OPTION ### ; set TIMER INTERRUPT mode ; note: Run led will blink if timer_int_en defined ; ; comment out next line to disable timer interrupts timer_int_en con 1 ;define to enable timer interrupts ; comment to disable timer interrupts ; ;########################################### ; ; ### CONDITIONAL COMPILING OPTION ### ; set INPUT INTERRUPT mode ; note: Requires timer_int_en to be defined ; Speakjet and console serial output is not compatible with this mode ; ; comment out next line to disable input interrupts ' input_int_en con 1 ;define to enable input interrupt mode ; comment to set polled input mode ; ;########################################### ; ;psim template written by David J. Brown ;based on code from Brice Hornback and Grant Richter ;revision: 0.50 ; April 27, 2005 ;history: 0.5 added MIDI interrupt transmit routines ; 0.44 streamlined debug_speakjet routine, changed ; gra divisor from 2000 to 2001 for accurate time ; 0.43 corrected send_speakjet pin label error, changed ; display_led to debug_led, changed send_console to ; debug_console, added debug_speakjet routine, changed ; led_data and con_data to debug_data ; 0.42 renamed start_b to start_j, renamed stop_b to ; stop_j, added push/pop to display_led, changed ; comment delimiter to semicolon, added send_console ; routine, re-aliased input pins, sends midi all notes ; off during initialization, added midi program change ; 0.41 upper case conversion to lower, variables and ; labels renamed ; 0.4 added averaged input input driver (polled or ; interrupt mode), display_led driver (for debug), ; speakjet driver, renamed program to djb template ; 0.3 added program header information, modified ; pin initialization ; 0.2 initialize aux output low and speakjet pins ; 0.1 added DAC & led initialization, 1 mS timestamp, ; stop led blinks when midi data received, run ; led toggles @ 0.5 S for health indication ; 0.0 initial release of midi input & output program ;date: April 13, 2004 ;******************************************* ; module: PSIM-1 ; processor Basic Micro AtomPro24M ;******************************************* ; ; Basic Micro Atom Pro-24M Configuration ; ; P0 - in-1 ; P1 - in-2 ; P2 - in-3 ; P3 - in-4 ; P4 - start button (momentary normally open switch) ; P5 - stop button (momentary normally open switch) ; P6 - j3 pin 2 (speakjet buffer half full) ; P7 - j3 pin 1 (serial data to speakjet) ; P8 - aux digital I/O ; P9 - stop led ; P10 - run led ; P11 - load_dacs ; P12 - ser_data ; P13 - clock ; P14 - j5 pin 1 (midi-in) ; P15 - j5 pin 2 (midi-out) ; ;******************************************* ; ;pin declarations pin_j1 con p0 ;in-1 pin pin_j2 con p1 ;in-2 pin pin_j3 con p2 ;in-3 pin pin_j4 con p3 ;in-4 pin start_j var in4 ;start jack and switch stop_j var in5 ;stop jack and switch aux_j con p8 ;aux jack (output mode) aux_in var in8 ;aux jack (input mode) stop_led con p9 ;stop led (red) stop_led_out var out9 ;variable alias for let command run_led con p10 ;run led (green) run_led_out var out10 ;variable alias for let command load_dacs con p11 'load dac pin ser_data con p12 'serial data to dac pin clock con p13 'dac clock pin midi_sdata con p15 ;midi data serial output ;i/o declarations in_j1 var word ;in-1 value: get_inputs, get_inputs_avg, avg1 in_j2 var word ;in-2 value: get_inputs, get_inputs_avg, avc2 in_j3 var word ;in-3 value: get_inputs, get_inputs_avg, avg3 in_j4 var word ;in-4 value: get_inputs, get_inputs_avg, avg4 out_j1 var word ;out-1 value: load_outputs out_j2 var word ;out-2 value: load_outputs out_j3 var word ;out-3 value: load_outputs out_j4 var word ;out-4 value: load_outputs ;midi variable declarations note_off con $80 ;midi note-off command: send_note_on, send_note_off note_on con $90 ;midi note-on command: send_note_on, send_note_off pgm_chg con $c0 'midi program change command:send_prog_change midi_chan var nib ;midi channel (0 - 15): send_note_on, send_note_off midi_note var byte ;midi note value: send_note_on, send_note_off midi_vel var byte ;midi velocity value: send_note_on, send_note_off midi_pgm var byte 'midi program change value:send_prog_change ;midi driver variable declarations midi_data var byte ;variable: check_midi, send_midi, get_rcx_bfr, send_note_on, send_note_off midi_data_isr var byte ;variable: midi_in_isr rcx_status var byte ;variable: check_midi, send_midi rcx_ptr_strt var byte ;received data start pointer (first data in buffer): get_rcx_bfr rcx_ptr_end var byte ;received data end pointer (last data in buffer+1): check_midi, midi_in_isr rcx_bfr_num var byte ;number of bytes in data buffer: check_midi, get_rcx_bfr, midi_in_isr rcx_data_flg var bit ;received data flag (1=data, 0=no data): get_rcx_bfr rcx_bfr_len con 32 ;midi-in buffer length: rcx_bfr rcx_bfr var byte(rcx_bfr_len) ;midi-in data buffer: check_midi, get_rcx_bfr, midi_in_isr tx_status var byte ;variable: tx_ptr_strt var byte ;transmit data start pointer (first data in buffer): tx_ptr_end var byte ;transmit data end pointer (last data in buffer+1): tx_bfr_num var byte ;number of bytes in data buffer: tx_data_flg var bit ;transmit data flag (1=data, 0=no data): tx_bfr_len con 128 ;midi-out buffer length: tx_bfr var byte(tx_bfr_len) ;midi-out data buffer: ;timer declarations #ifdef timer_int_en time_count var long ;1 mS timer count value: tm_isr turn_off var long ;time value to turn off stop led: tm_isr #endif ;input buffer declarations in_j1_ptr var byte ;in-1 buffer pointer: avgx, get_inputs_avg #ifdef input_int_en in_j2_ptr var byte ;in-2 buffer pointer: avgx in_j3_ptr var byte ;in-3 buffer pointer: avgx in_j4_ptr var byte ;in-4 buffer pointer: avgx isr_cnt var nib ;timer pass counter: tm_isr #endif in_j1_tmp var long ;in-1 temporary variable: avgx, get_inputs_avg in_j2_tmp var long ;in-2 temporary variable: avgx, get_inputs_avg in_j3_tmp var long ;in-3 temporary variable: avgx, get_inputs_avg in_j4_tmp var long ;in-4 temporary variable: avgx, get_inputs_avg in_j1_bfr var long(2) ;in-1 last 4 samples buffer: avgx, get_inputs_avg in_j2_bfr var long(2) ;in-2 last 4 samples buffer: avgx, get_inputs_avg in_j3_bfr var long(2) ;in-3 last 4 samples buffer: avgx, get_inputs_avg in_j4_bfr var long(2) ;in-4 last 4 samples buffer: avgx, get_inputs_avg ;misc declarations tempb var byte ;temp byte debug_data var byte ;variable: debug_led, debug_console fivevolts con 1920 ;5 volt output value count_N var word ;clock/N count limit ;clock edge counters clock_1 var byte ;clock/1 edge counter clock_2 var byte ;clock/2 edge counter clock_3 var byte ;clock/3 edge counter clock_4 var byte ;clock/4 edge counter clock_5 var byte ;clock/5 edge counter clock_6 var byte ;clock/6 edge counter clock_7 var byte ;clock/7 edge counter clock_8 var byte ;clock/8 edge counter clock_9 var byte ;clock/9 edge counter clock_10 var byte ;clock/10 edge counter clock_N var byte ;clock/N edge counter ;clock output states clock_out_1 var byte ;clock/1 output clock_out_2 var byte ;clock/2 output clock_out_3 var byte ;clock/3 output clock_out_4 var byte ;clock/4 output clock_out_5 var byte ;clock/5 output clock_out_6 var byte ;clock/6 output clock_out_7 var byte ;clock/7 output clock_out_8 var byte ;clock/8 output clock_out_9 var bit ;clock/9 output clock_out_10 var bit ;clock/10 output clock_out_N var bit ;clock/N output ; ;******************************************* ; ;initialize pins ;note: setting midi-out, i2c_clock, and i2c_data to outputs can send glitches so initialize as inputs dirs=%0011111000000000 ;configure pin direction (1=output, 0=input) ;inputs: midi-in, aux, start, stop, in-4, in-3, in-2, in-1 ;outputs: load_dacs, ser_data, clock, stop led, run led, i2c clock & data low run_led ;set run led off low stop_led ;set stop led off high load_dacs ;set dac load-0 high low ser_data ;set dac data low low clock ;set dac clock low let out_j1=0 ;set out-1 low let out_j2=0 ;set out-2 low let out_j3=0 ;set out-3 low let out_j4=0 ;set out-4 low gosub load_outputs ; ;initialize midi hardware ;these next 6 commands need to be in this order! let scr3=%00000000 ;reset Serial Control Register let smr=%00000000 ;set Serial Mode Register ; asynchronous ; 8 bits ; parity disabled ; even parity (disabled) ; 1 stop bit ; multiprocessor mode disabled ; brr clock source direct let brr=15 ;set Bit Rate Register for 31500 baud pauseus 100 ;let brr settle for 50 uS let scr3=%00110000 ;set Serial Control Register ; transmit or receive interrupts disabled ; transmit and receive enabled ; multiprocessor interrupt disabled ; transmit end interrupt disabled ; internal baud rate generator let pmr1=%00001110 ;set Port Mode Register ; P17 general I/O port ; P16 general I/O port ; P15 general I/O port ; P14 general I/O port ; txd output ; P10 general I/O port ; #ifdef timer_int_en ;initialize timer hardware for 1 mS interrupts let tmrw=%10001000 ;set Timer Mode Register to enable count let tcrw=%10110000 ;set Timer Control Register ; TCNT cleared by compare match ; /8 internal clock let tierw=%01110000 ;set Timer Interrupt register to disable overflow interrupt let tsrw=%01110000 ;set Timer Status Register to default let tior0=%10001000 ;set Timer I/O Register 0 to default let tior1=%10001000 ;set Timer I/O Register 1 to default let gra=2001 ;set General Register A ; 16 MHz clock /8 = 2 MHz ; 2000 (+1) counts = 1 mS interrupt #endif ; ;initialize misc variables let rcx_ptr_strt=0 ;set receive start pointer let rcx_ptr_end=0 ;set receive end pointer let rcx_bfr_num=0 ;set receive buffer to empty let tx_ptr_strt=0 ;set transmit start pointer let tx_ptr_end=0 ;set transmit end pointer let tx_bfr_num=0 ;set transmit buffer to empty let midi_chan=0 ;set midi channel to 0 let midi_note=0 ;set midi note to 0 let midi_vel=$40 ;set default velocity let debug_data=0 ;set debug_data to 0 let in_j1_ptr=0 ;set in-1 pointer to 0 #ifdef input_int_en let in_j2_ptr=0 ;set in-2 pointer to 0 let in_j3_ptr=0 ;set in-3 pointer to 0 let in_j4_ptr=0 ;set in-4 pointer to 0 let isr_cnt=0 ;set isr pass counter to 0 #endif let in_j1_bfr(0)=0 ;set in-1 buffer data to 0 let in_j1_bfr(1)=0 let in_j2_bfr(0)=0 ;set in-2 buffer data to 0 let in_j2_bfr(1)=0 let in_j3_bfr(0)=0 ;set in-3 buffer data to 0 let in_j3_bfr(1)=0 let in_j4_bfr(0)=0 ;set in-4 buffer data to 0 let in_j4_bfr(1)=0 let count_N=0 ;initialize clock variables let clock_1=0 let clock_2=0 let clock_3=0 let clock_4=0 let clock_5=0 let clock_6=0 let clock_7=0 let clock_8=0 let clock_9=0 let clock_10=0 let clock_N=0 let clock_out_1=0 let clock_out_2=0 let clock_out_3=0 let clock_out_4=0 let clock_out_5=0 let clock_out_6=0 let clock_out_7=0 let clock_out_8=0 let clock_out_9=0 let clock_out_10=0 let clock_out_N=0 ; ;enable timer interrupts #ifdef timer_int_en let time_count=0 ;set real time counter to 0 let turn_off=0 ;set time to turn off to time_count oninterrupt timerwint_imiea, tm_isr enable timerwint_imiea ;enable timer interrupt #endif ; ;enable midi receive interrupts #ifdef midi_int_en oninterrupt sci3int_rdrf, midi_in_isr enable sci3int_rdrf ;enable midi-in interrupt #endif ; ;display program name let midi_data=$f0 ;sysex gosub put_tx_bfr let midi_data=$7d ;display id gosub put_tx_bfr let midi_data=$0a ;clear display gosub put_tx_bfr let midi_data=$18 ;overwrite gosub put_tx_bfr let midi_data="M" gosub put_tx_bfr let midi_data="O" gosub put_tx_bfr let midi_data="T" gosub put_tx_bfr let midi_data="M" gosub put_tx_bfr let midi_data="-" gosub put_tx_bfr let midi_data="7" gosub put_tx_bfr let midi_data="3" gosub put_tx_bfr let midi_data="0" gosub put_tx_bfr let midi_data=$f7 ;end sysex gosub put_tx_bfr ; ;main program let midi_data=$B0 ;CC channel 0 gosub put_tx_bfr let midi_data=0 ;controller 0 gosub put_tx_bfr let midi_data=0 ;send CC to set running status gosub put_tx_bfr ; ;look for clock edges clk_look_1: if stop_j=1 then clk_look_1 ;hold on stop true if aux_in=0 then clk_look_1 ;look for clock hi transition high stop_led gosub get_inputs ;get inputs ;process step output if in_j4>666 then ;by octaves out_j4=out_j4+384 ;12 semitones elseif in_j4>333 ;by 5ths out_j4=out_j4+160 ;5 semitones else ;by 4ths out_j4=out_j4+128 ;4 semitones endif if out_j4>1920 then let out_j4=0 ;reset step to 0 endif gosub edge clk_look_0: if aux_in=1 then clk_look_0 ;look for clock low transition low stop_led gosub edge ;process inputs let in_j3=in_j3>>1 ;half scale to 8 bits if in_j3>255 then let in_j3=255 ;limit to 255 endif let count_N=(in_j2>>2)*in_j3 ;scale to 8 bits and multiply let count_N=(count_N>>11)+(in_j1>>5) ;sum CV*gain + /N if count_N>31 then let count_N=31 else let count_N=count_N+1 ;eliminate /0 endif goto clk_look_1 ; ;count edges of input clock and process outputs edge: ;clock/1 let midi_data=0 ;controller 1 gosub put_tx_bfr let clock_out_1=clock_out_1^%01000000 let midi_data=clock_out_1 ;set to 0 or 5 volts gosub put_tx_bfr ;clock/2 let clock_2=clock_2+1 ;increment edge count if clock_2=2 then ;toggle output let midi_data=1 ;controller 2 gosub put_tx_bfr let clock_2=0 ;reset edge count let clock_out_2=clock_out_2^%01000000 let midi_data=clock_out_2 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/3 let clock_3=clock_3+1 ;increment edge count if clock_3=3 then ;toggle output let midi_data=2 ;controller 3 gosub put_tx_bfr let clock_3=0 ;reset edge count let clock_out_3=clock_out_3^%01000000 let midi_data=clock_out_3 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/4 let clock_4=clock_4+1 ;increment edge count if clock_4=4 then ;toggle output let midi_data=3 ;controller 4 gosub put_tx_bfr let clock_4=0 ;reset edge count let clock_out_4=clock_out_4^%01000000 let midi_data=clock_out_4 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/5 let clock_5=clock_5+1 ;increment edge count if clock_5=5 then ;toggle output let midi_data=4 ;controller 5 gosub put_tx_bfr let clock_5=0 ;reset edge count let clock_out_5=clock_out_5^%01000000 let midi_data=clock_out_5 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/6 let clock_6=clock_6+1 ;increment edge count if clock_6=6 then ;toggle output let midi_data=5 ;controller 6 gosub put_tx_bfr let clock_6=0 ;reset edge count let clock_out_6=clock_out_6^%01000000 let midi_data=clock_out_6 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/7 let clock_7=clock_7+1 ;increment edge count if clock_7=7 then ;toggle output let midi_data=6 ;controller 7 gosub put_tx_bfr let clock_7=0 ;reset edge count let clock_out_7=clock_out_7^%01000000 let midi_data=clock_out_7 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/8 let clock_8=clock_8+1 ;increment edge count if clock_8=8 then ;toggle output let midi_data=7 ;controller 8 gosub put_tx_bfr let clock_8=0 ;reset edge count let clock_out_8=clock_out_8^%01000000 let midi_data=clock_out_8 ;set to 0 or 5 volts gosub put_tx_bfr endif ;clock/9 let clock_9=clock_9+1 ;increment edge count if clock_9=9 then ;toggle output let clock_9=0 ;reset edge count let clock_out_9=clock_out_9^1 let out_j1=clock_out_9*1920 ;set to 0 or 5 volts endif ;clock/10 let clock_10=clock_10+1 ;increment edge count if clock_10=10 then ;toggle output let clock_10=0 ;reset edge count let clock_out_10=clock_out_10^1 let out_j2=clock_out_10*1920 ;set to 0 or 5 volts endif ;clock/N let clock_N=clock_N+1 ;increment edge count if clock_N>=count_N then ;toggle output let clock_N=0 ;reset edge count let clock_out_N=clock_out_N^1 let out_j3=clock_out_N*1920 ;set to 0 or 5 volts endif gosub load_outputs ;set outputs including step return ; ;******************************************* ; subroutines ;******************************************* ; #ifndef midi_int_en ;poll midi-in ;puts data into buffer and sets rcx_bfr_num to number of entries ;written by David J. Brown check_midi: let rcx_status=ssr if rcx_status&%01000000 then ;data has been received let midi_data=rdr ;read Receiver Data Register if midi_data<>$fe then ;ignore if active status ;put midi_data into receive buffer ;check to see if buffer full if rcx_bfr_num=rcx_bfr_len then ;buffer is full ;simply loose data else ;buffer has space let rcx_bfr(rcx_ptr_end)=midi_data let rcx_bfr_num=rcx_bfr_num+1 let rcx_ptr_end=rcx_ptr_end+1 if rcx_ptr_end=rcx_bfr_len then rcx_ptr_end=0 ;wrap pointer at max value endif endif endif else ;no data received ;check if error if rcx_status&%00111000 then ;error condition let rcx_status=rcx_status&%10000111 let ssr=rcx_status ;reset error bits endif endif return #endif ; ;gets midi_data from buffer ;rcx_data_flg=1 if successful, rcx_data_flg=0 if no data in buffer ;written by David J. Brown get_rcx_bfr: #ifdef midi_int_en disable sci3int_rdrf ;isr uses the same variables #endif ;check to see if buffer empty if rcx_bfr_num=0 then ;buffer is empty let rcx_data_flg=0 ;set empty flag else ;buffer has data let midi_data=rcx_bfr(rcx_ptr_strt) let rcx_bfr_num=rcx_bfr_num-1 let rcx_ptr_strt=rcx_ptr_strt+1 if rcx_ptr_strt=rcx_bfr_len then let rcx_ptr_strt=0 ;wrap pointer at max value endif let rcx_data_flg=1 ;set data returned flag endif #ifdef midi_int_en enable sci3int_rdrf #endif return ; ;puts midi_data into buffer ;will wait until buffer has room ;sets tx_bfr_num to number of entries ;written by David J. Brown put_tx_bfr: if tx_bfr_num=tx_bfr_len then put_tx_bfr;wait if buffer full disable timerwint_imiea ;disable interrupts while using timer ; disable sci3int_tdre ;disable interrupts while adjusting pointers ;buffer has space let tx_bfr(tx_ptr_end)=midi_data let tx_bfr_num=tx_bfr_num+1 let tx_ptr_end=tx_ptr_end+1 if tx_ptr_end=tx_bfr_len then tx_ptr_end=0 ;wrap pointer at max value endif enable timerwint_imiea ;disable interrupts while using timer ; enable sci3int_tdre return ; ;output midi note-on command send_note_on: let midi_data=note_on+midi_chan gosub send_midi let midi_data=midi_note gosub send_midi let midi_data=midi_vel gosub send_midi return ; ;output midi note-off command send_note_off: let midi_data=note_off+midi_chan gosub send_midi let midi_data=midi_note gosub send_midi let midi_data=0 gosub send_midi return ; ;output midi all notes off command send_all_off: let midi_data=$b0+midi_chan ;send all notes off gosub send_midi let midi_data=$7b gosub send_midi let midi_data=0 gosub send_midi return ; ;output 3 byte program change command send_prog_change: let midi_data=pgm_chg+midi_chan gosub send_midi let midi_data=midi_pgm gosub send_midi return ; ;send midi_data ;waits until transmitter ready ;written by David J. Brown send_midi: let tx_status=ssr if tx_status&%10000000 then ;check transmitter ready ;ready to transmit let tdr=midi_data ;send data to tdr return endif goto send_midi ; #ifndef input_int_en ;sample in-1 to in-4 ;injx is input value (0 - 1023) ;150 uS execution time get_inputs: adin pin_j1,in_j1 adin pin_j2,in_j2 adin pin_j3,in_j3 adin pin_j4,in_j4 return ; ;sample and average in-1 to in-4 ;injx is input value averaged over last four samples (0 - 1023) ;injx_bfr(0) & injx_bfr(1) are last four word samples ;600 uS execution time ;written by David J. Brown get_inputs_avg: adin pin_j1,in_j1_bfr.word1(in_j1_ptr) ;get in-1 into buffer let in_j1_tmp=in_j1_bfr(0)+in_j1_bfr(1) ;add two high words together and low words together let in_j1=(in_j1_tmp.word1+in_j1_tmp.word0)/4 adin pin_j2,in_j2_bfr.word1(in_j1_ptr) ;get in-2 into buffer let in_j2_tmp=in_j2_bfr(0)+in_j2_bfr(1) ;add two high words together and low words together let in_j2=(in_j2_tmp.word1+in_j2_tmp.word0)/4 adin pin_j3,in_j3_bfr.word1(in_j1_ptr) ;get in-3 into buffer let in_j3_tmp=in_j3_bfr(0)+in_j3_bfr(1) ;add two high words together and low words together let in_j3=(in_j3_tmp.word1+in_j3_tmp.word0)/4 adin pin_j4,in_j4_bfr.word1(in_j1_ptr) ;get in-4 into buffer let in_j4_tmp=in_j4_bfr(0)+in_j4_bfr(1) ;add two high words together and low words together let in_j4=(in_j4_tmp.word1+in_j4_tmp.word0)/4 let in_j1_ptr=(in_j1_ptr+1)&$03 ;increment pointer and wrap at 3 return #endif ; ;send debug_data to console ;written by David J. Brown debug_console: #ifdef timer_int_en disable timerwint_imiea ;interrupts must be off for correct timing #endif #ifdef midi_int_en disable sci3int_rdrf #endif serout s_out,i38400,[hex debug_data,13] #ifdef midi_int_en enable sci3int_rdrf #endif #ifdef timer_int_en enable timerwint_imiea #endif return ; ;output out_jx values to dacs ;based on code written by Grant Richter ;750 uS execution time load_outputs: ;add addresses to values ;shift out 16 bits mode 4 shiftout ser_data,clock,fastmsbpre,[(out_j1+49152)\16] pulsout load_dacs,1 ;pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[(out_j2+32768)\16] pulsout load_dacs,1 ;pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[(out_j3+16384)\16] pulsout load_dacs,1 ;pulse loaddacs for each channel shiftout ser_data,clock,fastmsbpre,[out_j4\16] pulsout load_dacs,1 ;pulse loaddacs for each channel return ; ;******************************************* ;interrupt service routines ;******************************************* ; #ifdef timer_int_en ;interrupt service routine for timer ;increments time_count value ;turn off stop led at turn_off value ;toggle run led at 512 mS intervals ;written by David J. Brown tm_isr: let time_count=time_count+1 ;increment real time count ; if time_count=turn_off then ;value to turn off stop led ; low stop_led ; endif let run_led_out=time_count.bit9 ;toggle run led at 512 mS intervals #endif #ifndef input_int_en goto midi_out_isr ;transmit midi data at timer interrupt ; resume ;resume if input polled mode #endif #ifdef input_int_en ;continue if input interrupt mode ;sample in-1 - in-4 at specific intervals ;injx is input averaged over last 4 samples (0 - 1023) ;injx_bfr(0) & injx_bfr(1) are last 4 word samples let isr_cnt=isr_cnt+1 ;change the following table to modify the scan rate for each input ;175 uS execution time so maximum of one sample and average per interrupt ;currently set for: in-1 @ 2 mS, in-2 @ 4 mS, in-3 @ 8 mS, in-4 @ 8 mS branch isr_cnt, [avg1,avg2,avg1,avg3,avg1,avg2,avg1,avg4,avg1,avg2,avg1,avg3,avg1,avg2,avg1,avg4] ;sample in-1 avg1: adin pin_j1,in_j1_bfr.word1(in_j1_ptr) ;get in-1 into buffer let in_j1_tmp=in_j1_bfr(0)+in_j1_bfr(1) ;add two high words together and low words together let in_j1=(in_j1_tmp.word1+in_j1_tmp.word0)/4 let in_j1_ptr=(in_j1_ptr+1)&$03 ;increment pointer and wrap at 3 resume ;sample in-2 avg2: adin pin_j2,in_j2_bfr.word1(in_j2_ptr) ;get in-2 into buffer let in_j2_tmp=in_j2_bfr(0)+in_j2_bfr(1) ;add two high words together and low words together let in_j2=(in_j2_tmp.word1+in_j2_tmp.word0)/4 let in_j2_ptr=(in_j2_ptr+1)&$03 ;increment pointer and wrap at 3 resume ;sample in-3 avg3: adin pin_j3,in_j3_bfr.word1(in_j3_ptr) ;get in-3 into buffer let in_j3_tmp=in_j3_bfr(0)+in_j3_bfr(1) ;add two high words together and low words together let in_j3=(in_j3_tmp.word1+in_j3_tmp.word0)/4 let in_j3_ptr=(in_j3_ptr+1)&$03 ;increment pointer and wrap at 3 resume ;sample in-4 avg4: adin pin_j4,in_j4_bfr.word1(in_j4_ptr) ;get in-4 into buffer let in_j4_tmp=in_j4_bfr(0)+in_j4_bfr(1) ;add two high words together and low words together let in_j4=(in_j4_tmp.word1+in_j4_tmp.word0)/4 let in_j4_ptr=(in_j4_ptr+1)&$03 ;increment pointer and wrap at 3 resume #endif ; #ifdef midi_int_en ;interrupt service routine for midi-in data ;puts data into buffer and sets rcx_bfr_num to number of entries ;priority given to midi-in over timer interrupts ;written by David J. Brown midi_in_isr: ;read Receiver Data Register must be first instruction to clear interrupt let midi_data_isr=rdr ;read Receiver Data Register disable timerwint_imiea ;disable timer interrupts if midi_data_isr<>$fe then ;ignore if active status ;check to see if buffer full if rcx_bfr_num=rcx_bfr_len then ;buffer is full ;simply loose data else ;put data into buffer let rcx_bfr(rcx_ptr_end)=midi_data_isr let rcx_bfr_num=rcx_bfr_num+1 ;set rcx_bfr_num to number of entries let rcx_ptr_end=rcx_ptr_end+1 ;increment pointer for next entry if rcx_ptr_end=rcx_bfr_len then rcx_ptr_end=0 ;wrap pointer at max value endif endif endif enable timerwint_imiea resume #endif ; ;interrupt service routine for midi-out data ;transmits midi data from tx buffer on timer interrupt ; since tdre interrupt seems to not function (4-28-05) ;written by David J. Brown midi_out_isr: if tx_bfr_num<>0 then ; let tx_status=ssr ; if tx_status&%10000000 then ;check transmitter ready ;ready to transmit let tdr=tx_bfr(tx_ptr_strt) let tx_bfr_num=tx_bfr_num-1 let tx_ptr_strt=tx_ptr_strt+1 if tx_ptr_strt=tx_bfr_len then let tx_ptr_strt=0 ;wrap pointer at max value endif ; endif endif resume ; ;******************************************* ;end of program ;*******************************************